Adult Stem Cell Therapy Successfully Treats Spinal Cord Injury

An interesting spinal cord injury study was published last week. The Turkish researchers tested two types of stem cells on spinal cord injured mice. The two cell types were native bone marrow cells and cultured repair stem cells called Mesenchymal stem cells. Native bone marrow cells contain bone marrow forming stem cells as well as a small number of Mesenchymal stem cells.

After injuring the spinal cords, the stem cells were implanted at the site of the injury. The control mice that received no cells had no improvement in neural activity. The mice that received both cell types had improved neural activity. The cultured Mesenchymal stem cell group improved significantly more than the native bone marrow stem cell group.

Stem Cell Rev. 2012 May 3. [Epub ahead of print]
Stem Cell Therapy in Spinal Cord Injury: In Vivo and Postmortem Tracking of Bone Marrow Mononuclear or Mesenchymal Stem Cells.
Ozdemir M, Attar A, Kuzu I, Ayten M, Ozgencil E, Bozkurt M, Dalva K, Uckan D, Kılıc E, Sancak T, Kanpolat Y, Beksac M.

School of Medicine, Department of Neurosurgery, Pamukkale University, 20070, Kinikli, Denizli, Turkey,

The aim of this study was to address the question of whether bone marrow-originated mononuclear cells (MNC) or mesenchymal stem cells (MSC) induce neural regeneration when implanted intraspinally.

The study design included 4 groups of mice: Group 1, non-traumatized control group; Groups 2, 3 and 4 spinal cord traumatized mice with 1 g force Tator clips, which received intralesionally either no cellular implants (Group 2), luciferase (Luc) (+) MNC (Group 3) or MSC (Group 4) obtained from CMV-Luc or beta-actin Luc donor transgenic mice. Following the surgery until decapitation, periodical radioluminescence imaging (RLI) and Basso Mouse Scale (BMS) evaluations was performed to monitor neural activity. Postmortem immunohistochemical techniques were used to analyze the fate of donor type implanted cells.

All mice of Groups 3 and 4 showed various degrees of improvement in the BMS scores, whereas there was no change in Groups 1 and 2. The functional improvement was significantly better in Group 4 compared to Group 3 (18 vs 8, p = 0.002). The immunohistochemical staining demonstrated GFP(+)Luc(+) neuronal/glial cells that were also positive with one or more of these markers: nestin, myelin associated glycoprotein, microtubule associated protein or myelin oligodendrocyte specific protein, which is considered as indicator of donor type neuronal regeneration. Frequency of donor type neuronal cells; Luc + signals and median BMS scores were observed 48-64 % and 68-72 %; 44-80 %; 8 and 18 within Groups III and IV respectively.

MSCs were more effective than MNC in obtaining neuronal recovery. Substantial but incomplete functional improvement was associated with donor type in vivo imaging signals more frequently than the number of neuronal cells expressing donor markers in spinal cord sections in vitro. Our results are in favor of functional recovery arising from both donor MSC and MNCs, contributing to direct neuronal regeneration and additional indirect mechanisms.

Stem Cell Therapy For Spinal Cord Injury and A Layman’s Guide To Adipose Stem Cell Therapy – Stem Cell Institute Seminar in Gilbert, AZ

The Treatment of Human Diseases with Adult Stem Cells


We are proud to present and discuss the latest in adult stem cell treatments for diseases. Join us for informational presentations by:

Jorge Paz Rodriguez, MDA Layman’s Guide to Adipose Stem Cell Therapy

Neil Riordan, PhDAdult Stem Cell Therapy for Spinal Cord Injury

Patients will be on hand to discuss their experiences.


April 21, 2011
12:30 pm – 4:00 pm

Legato Hotel
San Tan Elegante Conference Center
Gilbert, AZ 85296

Register at

(800) 980-STEM (7836)