Stem cell pioneer sets sights on Japan – Japan Times features Neil Riordan, PhD of Medistem Panama

Japan Times Article Medistem

“We enjoy the advantage of having a large amount of clinical data on 2,000 patients. So we analyzed who received which cells and which cells worked best in different conditions. This allowed us to create our selection process through molecular profiling,” explained Medistem (Panama) Founder and CEO Dr. Neil Riordan.

Operating what is arguably the country’s most advanced laboratory, an 8,000-sq-ft facility in the City of Knowledge science and technology cluster, Medistem has raised its profile in recent years as it develops stem cell-based products for clinical trials for treatment of autism, asthma, multiple sclerosis, osteoarthritis, rheumatoid arthritis and spinal cord injuries.

Utilizing its patented technologies, Medistem harvests human adult stem cells from umbilical cords, tissues and blood as well as from bone marrow and adipose tissue. “We have intellectual property on a methodology for basically defining which are good cells, which are mediocre and which are the useless ones. The U.S. Food and Drug Administration has approved our cells for compassionate use in the United States. This is a big step,” Riordan said.

Compassionate use, also known as expanded access, refers to the use of investigational new drugs outside of a clinical trial by patients with serious, life-threatening conditions. After finishing its first prospective clinical trial, and with six others in the pipeline, the company is considering the favorable regulatory conditions for cell therapy in Japan, now a promising market for its products.

“Japan has a law on the books that allows a company of our size to commercialize such products. That makes it our number one priority. We are gearing up to present our data to regulators, as well holding talks with potential partners over there,” Riordan added.

Stem Cell Therapy: Study finds that autologous bone marrow disc injections significantly reduce lumbar disc pain

A study published last year (2015) in the scientific journal Stem Cells entitled “Percutaneous injection of autologous bone marrow concentrate significantly reduces lumbar discogenic pain through 12 months”, reported that patients suffering from chronic back pain due to degenerative disc disease who were treated by injecting their own bone marrow aspirate concentrate (BMAC) into their lumbar discs experienced significant pain reduction 12 months after treatment.

Woman Back PainDegenerative disc disease (DDD) is a term used to describe normal changes in spinal discs as one ages. Spinal discs separate the spinal vertebrae and act as shock absorbers that allow the spine to twist, bend and flex. DDD usually affects the discs in the lower back (lumbar) or the neck (cervical).

DDD in lumbar discs can cause lower back pain, osteoarthritis, abnormal disc bulging (herniated disc) and spinal stenosis (narrowing of the tunnel-like space that holds the spinal cord), any of which can exert pressure on spinal nerves and the spinal cord causing pain and affecting nerve function.

BMAC contains mesenchymal stem cells and CD34+ stem cells. Mesenchymal stem cells have been shown to promote tissue growth including cartilage and CD34+ stem cells can promote tissue vascularization, thus increasing blood supply to new or damaged tissue.

The researchers studied 26 patients who were suffering from discogenic lower back pain. Patients were followed up at 3, 6, and 12 months.

After 12 months, 21 out of 26 patients experienced statistically significant improvements in pain scores and impairment. The most dramatic improvements were seen in patients with higher stem cell counts.

The original publication can be found here: http://onlinelibrary.wiley.com/doi/10.1002/stem.1845/epdf

At Riordan-McKenna Institute, Dr. Riordan’s orthopedic stem cell clinic in Dallas-Fort Worth, Dr. McKenna performs a procedure for degenerative disc disease that is similar to the one described in the Stem Cell Journal study.

However, Dr. McKenna augments the BMAC injections with *AlphaGEMS amniotic tissue product. AlphaGEMS is a pliable tissue allograft (transplant) derived from human placental amnion, which contains over 100 growth factors and functions as a biologic structural matrix to facilitate and enhance tissue healing and repair. The inclusion of AlphaGEMS adds a new dimension to the tissue repair process that was successfully tested in the cited study.

“Since we perform lumbar disc injections with BMAC and AphaGEMS at RMI, we are encouraged to see an independent study published that shows the effectiveness of a similar procedure for patients suffering from discogenic lumbar back pain,” states Riordan-McKenna Institute Medical Director, Wade McKenna, DO.

For more information about BMAC and AlphaGEMS treatment at RMI, please visit: http://www.rmiclinic.com/non-surgical-stem-cell-injections-joint-pain/stemnexa-protocol/

If you are suffering from degenerative disc disease and would like to be evaluated for treatment at RMI, the first step is to complete an online medical history. Once we receive it, our staff will contact you to answer general questions and to guide you through the rest of the evaluation process, which usually requires recent MRI images and an MRI report.

https://secureform.rmiclinic.com/forms/13299/3207/VVp7/form.html


*AlphaGEMS tissue is procured from contracted hospitals after normal, healthy births

Stem Cell-Augmented Achilles Tendon Rupture Repair Yields Excellent Results

Int Orthop. 2015 May;39(5):901-5. doi: 10.1007/s00264-015-2725-7. Epub 2015 Mar 22.

Outcomes of acute Achilles tendon rupture repair with bone marrow aspirate concentrate (BMAC) augmentation

Stein BE, Stroh DA, Schon LC.

“Excellent results, including no re-ruptures and early mobilisation, were observed…”

Abstract

Kobe-AchillesPURPOSE:
Optimal treatment of acute Achilles tendon ruptures remains controversial. Positive results using stem-cell-bearing concentrates have been reported with other soft-tissue repairs, but no studies exist on outcomes of bone marrow aspirate concentrate (BMAC) augmentation in primary Achilles tendon repair.

METHODS:
We reviewed patients with sport-related Achilles tendon ruptures treated via open repair augmented with BMAC injection from 2009 to 2011. Data on operative complications, strength, range of motion, rerupture, calf circumference and functional improvement through progressive return to sport and the Achilles tendon Total Rupture Score (ATRS) were analysed.

RESULTS:
A total of 27 patients (28 tendons) treated with open repair and BMAC injection were identified (mean age 38.3 ± 9.6 years). At mean follow-up of 29.7 ± 6.1 months, there were no reruptures. Walking without a boot was at 1.8 ± 0.7 months, participation in light activity was at 3.4 ± 1.8 months and 92% (25 of 27) of patients returned to their sport at 5.9 ± 1.8 months. Mean ATRS at final follow-up was 91 (range 72-100) points. One case of superficial wound dehiscence healed with local wound care. No soft-tissue masses, bone formation or tumors were observed in the operative extremity.

CONCLUSIONS:
Excellent results, including no re-ruptures and early mobilisation, were observed in this small cohort with open Achilles tendon repair augmented by BMAC. No adverse outcomes of biologic treatment were observed with this protocol. The efficacy of BMAC in the operative repair of acute Achilles tendon ruptures warrants further study.

LEVEL OF EVIDENCE:
IV – Therapeutic.

Ruptured Achilles Tendon Treatment at Dr. Riordan’s Clinic in Dallas-Fort Worth

At Riordan-McKenna Institute, Dr. McKenna performs a procedure for achilles tendon rupture that is similar to the one described in this study. However, Dr. McKenna augments the BMAC injection with AlphaGEMS amniotic tissue product. AlphaGEMS is a pliable tissue allograft (transplant) derived from human placental amnion, which contains over 100 growth factors and functions as a biologic structural matrix to facilitate and enhance tissue healing and repair. The inclusion of AlphaGEMS adds a new dimension to the tissue repair process.

For more information about BMAC and AlphaGEMS treatment at RMI, please visit: http://www.rmiclinic.com/non-surgical-stem-cell-injections-joint-pain/stemnexa-protocol/

If you have suffered a ruptured achilles tendon and would like to be evaluated for treatment at RMI, the first step is to complete an online medical history. Once we receive it, our staff will contact you to answer general questions and to guide you through the rest of the evaluation process, which usually requires recent MRI images and an MRI report.

https://secureform.rmiclinic.com/forms/13299/3207/VVp7/form.html

What are the sources of the stem cells used at Stem Cell Institute in Panama?

Lately, especially on our Facebook Page many people are asking us, “What is the source of the stem cells?”

Stem cells under fluorescent microscope.At the Stem Cell Institute, we use two types of stem cells. Primarily, we use allogeneic mesenchymal stem cells harvested from human umbilical cord tissue. In addition to allogeneic mesenchymal stem cells, our spinal cord injury protocol uses autologous (patient’s own) stem cells harvested from bone marrow.

Umbilical cord tissue is donated by mothers after normal, healthy births.

All donating mothers are tested for infectious diseases and have their medical histories screened. We obtain proper consent from each family prior to umbilical cord donation.

All mesenchymal stem cells harvested from umbilical cords are screened for infectious diseases to International Blood Bank Standards before they are approved for use in treatments.

A small number of umbilical cords (about 1 in 10) pass our rigorous screening process.

Dr. Riordan on the Umbilical Cord Selection Process at Stem Cell Institute

“Through retrospective analysis of our cases, we’ve identified proteins and genes that allow us to screen several hundred umbilical cord donations to find the ones that we know are most effective. We only use these cells and we call them ‘golden cells’.

We go through a very high throughput screening process to find cells that we know have the best anti-inflammatory activity, the best immune modulating capacity, and the best ability to stimulate regeneration.”

What are the advantages of treating with allogeneic human umbilical cord tissue (HUCT)-derived mesenchymal stem cells?

  • Anyone can be treated since HUCT mesenchymal stem cells are immune system privileged. Human Leukocyte Antigen (HLA) matching is not necessary.
  • The stem cells with the best anti-inflammatory activity, immune modulating capacity, and ability to stimulate regeneration can be screened and selected.
  • Allogeneic stem cells can be administered multiple times over the course of days in uniform dosages that contain high cell counts.
  • Umbilical cord tissue provides an abundant supply of mesenchymal stem cells.
  • No need to collect stem cells through invasive procedures such as liposuction or bone marrow collection
  • There is a growing body of evidence showing that mesenchymal stem cells from umbilical cords are more robust than mesenchymal stem cells from other sources such as fat.

The body’s immune system is unable to recognize human umbilical cord tissue (HUCT)-derived mesenchmyal stem cells as foreign and therefore they are not rejected. HUCT stem cells have been administered thousands of times at the Stem Cell Institute and there has never been a single instance rejection (graft vs. host disease). Umbilical cord-derived mesenchymal stem cells also proliferate/differentiate more efficiently than “older” cells, such as those found in the fat and therefore, they are considered to be more “potent”.

Watch Professor Arnold Caplan from Case Western Reserve University explain how this works.

Stem Cell Institute Public Seminar on Adult Stem Cell Therapy Clinical Trials in New York City May 17th, 2014

New York, NY (PRWEB) April 09, 2014

The Stem Cell Institute, located in Panama City, Panama, will present an informational umbilical cord stem cell therapy seminar on Saturday, May 17, 2014 in New York City at the New York Hilton Midtown from 1:00 pm to 4:00 pm.

Speakers include:

Neil Riordan PhD“Clinical Trials: Umbilical Cord Mesenchymal Stem Cell Therapy for Autism and Spinal Cord Injury”

Dr. Riordan is the founder of the Stem Cell Institute and Medistem Panama Inc.

Jorge Paz-Rodriguez MD“Stem Cell Therapy for Autoimmune Disease: MS, Rheumatoid Arthritis and Lupus”

Dr. Paz is the Medical Director at the Stem Cell Institute. He practiced internal medicine in the United States for over a decade before joining the Stem Cell Institute in Panama.

Light snacks will be served afterwards. Our speakers and stem cell therapy patients will also be on hand to share their personal experiences and answer questions.

Admission is free but space in limited and registration is required. For venue information and to register and reserve your tickets today, please visit: http://www.eventbrite.com/e/stem-cell-institute-seminar-tickets-11115112601 or call Cindy Cunningham, Patient Events Coordinator, at 1 (800) 980-7836.

About Stem Cell Institute Panama
Founded in 2007 on the principles of providing unbiased, scientifically sound treatment options; the Stem Cell Institute (SCI) has matured into the world’s leading adult stem cell therapy and research center. In close collaboration with universities and physicians world-wide, our comprehensive stem cell treatment protocols employ well-targeted combinations of autologous bone marrow stem cells, autologous adipose stem cells, and donor human umbilical cord stem cells to treat: multiple sclerosis, spinal cord injury, osteoarthritis, rheumatoid arthritis, heart disease, and autoimmune diseases.

In partnership with Translational Biosciences, a subsidiary of Medistem Panama, SCI provides clinical services for ongoing clinical trials that are assessing safety and signs of efficacy for osteoarthritis, rheumatoid arthritis, and multiple sclerosis using allogeneic umbilical cord tissue-derived mesenchymal stem cells (hUC-MSC), autologous stromal vascular fraction (SVF) and hU-MSC-derived mesenchymal trophic factors (MTF). In 2014, Translation Biosciences expects to expand its clinical trial portfolio to include spinal cord injury, heart disease, autism and cerebral palsy.

To-date, SCI has treated over 2000 patients.

For more information on stem cell therapy:

Stem Cell Institute Website: http://www.cellmedicine.com

Stem Cell Institute
Via Israel & Calle 66
Plaza Pacific Office #2A
Panama City, Panama

About Medistem Panama Inc.
Since opening its doors in 2007, Medistem Panama Inc. has developed adult stem cell-based products from human umbilical cord tissue and blood, adipose (fat) tissue and bone marrow. Medistem operates an 8000 sq. ft. ISO 9001-certified laboratory in the prestigious City of Knowledge. The laboratory is fully licensed by the Panamanian Ministry of Health and features 3 class 10000 clean rooms, class 100 laminar flow hoods, and class 100 incubators.

Medistem Panama Inc.
Ciudad del Saber, Edif. 221 / Clayton
Panama, Rep. of Panama

Phone: +507 306-2601
Fax: +507 306-2601

About Translational Biosciences
A subsidiary of Medistem Panama Inc., Translational Biosciences was founded solely to conduct clinical trials using adult stem cells and adult stem cell-derived products.

Translational Biosciences webSite: http://www.translationalbiosciences.com

Email: trials(at)translationalbiosciences(dot)com

Medistem Panama Awarded ISO 9001 International Global Certification

Medistem Panama ISO 9001-2008 Logo

Awarded this:

CERTIFICATION

for the Quality Management System of:

MEDISTEM PANAMA

Offices included in the scope:

Ciudad del Saber, Edificio # 221, piso # 2,
Clayton, Ancón
Panama City, Republic of Panama

IAF ENAC Logos

The scope includes the following activities:

  • Isolation of stem cells from adipose tissue(ADSC) and mononuclear cells from bone marrow.
  • Expansion and harvest of mesenchymal stem cells from umbilical cord, adipose tissue and its derivatives.

ISO 9001:2008

Valid from 19, June 2016
Granted from Panama 20, June 2013

Antonio Martin
Director

IGC10126

IGC10126

Cutting edge: Surgeon uses stem cell surgery on stem cell researcher Neil Riordan PhD

Wise County Messenger
By Bob Buckel | Published Wednesday, July 31, 2013

A middle-aged man named Neil got his knee “scoped” in a Decatur operating room recently.

That’s not unusual. Wise Regional Health System’s OR is a busy place, and arthroscopic knee surgery is a common procedure.

But this particular knee had an interesting twist.

Wade McKenna MD and Neil Riordan PhD in OR

IN THE OR – Dr. Wade McKenna performs stem cell surgery on stem cell researcher Neil Riordan PhD.

The physician doing the surgery, Dr. Wade McKenna, met his patient when they shared a podium at a medical conference in February. The patient, Neil Riordan, has a Ph.D. in molecular biology and is one of the leading stem cell researchers in the world.

Riordan’s surgery, a fairly routine cleanout, ended with the insertion of a concentrate of his own stem cells back into the knee, to promote healing, foster cartilage regeneration, and reduce inflammation and the possibility of infection.

It’s a procedure Dr. McKenna has done more than 1,500 times, right here in Decatur, for a variety of fractures, cartilage and tendon injuries. Last year he operated on patients from four countries.

“It’s been mostly in the last three years, and really, the bulk of those in the last year,” he said. “It’s not like I have a newspaper ad that says ‘Stem Cell Surgeon.’ It’s just, you do a patient whose doctor calls you, and that doctor has a family member that he calls you about. Almost all these patients know someone I’ve already taken care of.”

He cited a doctor in Oklahoma who flew his wife down for knee surgery, and a radiologist who reviewed before and after MRIs of one of his procedures and saw actual cartilage growth.

“He calls me on the phone and says, “How did you do that? I’ve never seen condromilatia going the other direction. I’ve only seen it get worse.’” McKenna said. “He ends up sending his father-in-law, who’s from Canada, down to have the surgery. And that guy from Canada goes back and tells… so that’s how it’s happened.”

The surgeries are mostly routine – but the addition of bone marrow-derived stem cells afterward is a game-changer.

“Stem cells change the environment for healing in the joint,” Dr. McKenna said. “It’s like finding the light switch in a dark room. It looks like stem cells are the sentinel cells, the messenger cell – the light switch.

“It makes a substantial difference,” he added.

The journey that brought Neil Riordan to an operating table in Decatur started in Florida.

In February, at the International Stem Cell Society Conference in Fort Lauderdale, he spoke about research he’s doing in Panama that involves taking stem cells from a patient’s own fat, drying them, multiplying them and re-injecting them into the patient to promote healing.

McKenna spoke later about the technique he’s using. His method caught the researcher’s interest in part because it’s one of the few stem cell applications that’s legal in the U.S.

After he presented his results – broken clavicles to ankles to shoulders to arthritic knees – Riordan was interested enough to invite McKenna to dinner.

“He said he wanted to talk to me about some of the clinical experience I’ve had,” McKenna said. “He had not, to that point, been exposed to anyone who had that much experience with bone marrow-derived stem cells.”

Since then, they’ve gotten together several times – Riordan lives in Dallas and has a lab in Farmer’s Branch – and have “gone through a lot of research together,” McKenna said.

And somewhere in there, Riordan decided he might be a candidate for McKenna’s procedure.

CLEANING IT UP

“Neil saw all these films I’d taken and thought, ‘I’m ignoring a bunch of loose stuff floating around in my knee.’” McKenna said.

“It was only a couple of weeks ago – we’d been looking at a lot of cell cultures, and spending a lot of time in the lab in Dallas, and he finally just said, ‘Examine me. Put your hand here.’”

It was quickly obvious to the experienced surgeon that his research partner needed some work.

“I thought, ‘What are you doing?’” McKenna said. “He’s got locking, catching, giving way. I tell people all the time, you can ignore pain and swelling, but you can’t ignore mechanical symptoms. If something’s getting caught in your knee, it makes pretty intuitive sense to take that out, and your knee will feel better.”

To that point, Riordan’s focus had been simply on the application of stem cells – not combining it with surgery to clean out the joint and improve its mechanical function. Visiting with the surgeon, it made sense to combine the procedures.

Riordan himself explained it in an interview prior to his surgery.

“I still have stem cells in my bone marrow,” he said. “He’s going to pull some of those out and put them in the knee, the place where they’re needed.”

Riordan said the idea is to help the knee heal like it would have when he was much younger.

“When you’re young, you have a whole bunch of stem cells,” he said. “All we’re doing is just putting more of them in the right place at the right time to help people get over stuff. That’s what it boils down to.”

Riordan’s torn ACL, meniscus damage, adhesions and other knee problems were the result of an injury in 2002 where his knee swelled up, then “kind of” got better, McKenna said.

In surgery, to the constant beeping of the heart monitor and the ree-ree-ree of the pedal-operated instrument shaving off debris and vacuuming it out, the surgeon narrated while he operated.

“Just getting all the junk out of your knee, while it doesn’t give you a new knee, it certainly turns back the hands of time a little bit,” McKenna said. “He was just walking around, doing everything on this without seeking treatment.”

Fluid circulated through the knee and everyone watched the instruments on multiple big-screen television monitors in the OR.

“It didn’t make a lot of sense to start squirting stem cells into his knee until you clean it out a little bit,” McKenna said. “Even with the greatest stem cells in the world, if you just squirt it into that crummy knee with all that loose junk – none of that was going away.

“At least now, you see the difference in the joint. This has a chance of healing.”

After trimming for over an hour, removing frayed cartilage, bone spurs and adhesions, McKenna was ready to inject the bone-marrow aspirate that had been spinning just a few feet away.

THE KEY INGREDIENT

Prior to going into the knee, McKenna harvested bone marrow from Riordan’s left hip-bone and delivered it to a technician who put it into a specially-designed centrifuge.

Using the patient’s own stem cells makes the surgery legal in the U.S. Concentrating the bone marrow with a centrifuge makes it much more effective, based on the results McKenna has observed.

“A lot of doctors, when I say we’re doing bone marrow draws, they say there’s no stem cells in an adult,” he said. “That’s just not true. We’ve done the cell counts. I get over a million cells out of this harvest.”

He said the injection of stem cells accomplishes the same thing as microfracture – cracking the joint surface to bring bone marrow to the surface. It just does it better.

“In my mind, it’s not a big leap of faith to think that if a couple of drops of bone marrow from a worn-out knee help it heal, what would the equivalent of 110 ccs of spun-down, concentrated bone marrow with only the best parts do?

“That’s how we invented this surgery. No one had ever done microfracture surgery with bone marrow spread, and we did that in Decatur about five years ago.”

McKenna said the bone marrow from the ileac crest – the hip-bone – has more stem cells and growth factors than what’s in the knee – or on the market.

“There’s a patch that has about 60,000 donor stem cells and you can use that to help tendons heal,” he said. “But would you rather have 60,000 donor stem cells from someone else, that only have a viability of about 75 to 80 percent, or would you rather have 1 to 2 or 3 million of your own stem cells, with a viability of over 90 percent, that were taken at the time?

“They haven’t been freeze-dried, they haven’t been processed, they’re not from someone else – they’re yours. It’s a no brainer.”

“And the stem cells are delivered in a ‘slurry’ of concentrated growth factor,” he said.

“Now we’re on the right track, because the trophic factors are how you heal anyway. It’s how tendon heals, muscle heals, it’s how the body grows cartilage, grows tissue. It’s what stimulates growth and healing.

“We’re not doing anything abnormal,” he added. “This is the body’s normal physiology and reaction to disease. All we’re doing is adding a little gas to the engine.”

STEM CELL PIONEERS

Riordan, who has written more than 60 articles and chapters in two textbooks, speaks all over the world about stem cell therapy.

His research in Panama focuses on amniotic stem cells, taken from the “afterbirth” – the umbilical cord and amniotic sac – which would normally be disposed of after a baby is born.

“The amniotic membrane is actually what covers the baby in the womb, and that is what we use,” Riordan said. “There are 120-200 million stem cells inside of an amniotic membrane. They help in healing, decrease inflammation, decreasing adhesion formations, which is a real problem in surgery, particularly spine surgery. They promote and stimulate regeneration.”

Riordan’s clinic, Medistem Panama, is in an area just outside of Panama City called the City of Knowledge. Several major universities and research labs have located facilities there because of tax incentives and relaxed regulation.

Both stressed that the research in Panama uses amniotic tissue – not fetal tissue. Most stem-cell researchers reject the use of fetal tissue both for ethical reasons and because they’re simply not needed.

“The big political uproar about stem cell research is misguided,” he said. “Nobody is using fetal tissue. The only tissue that’s used is either the patient’s own tissue, or, better, amniotic tissue. That amniotic membrane is a very rich source of mesenchymal stem cells. That’s where a lot of Neil’s research is now.”

Riordan believes the FDA’s regulation of stem cells is misguided.

Speaking at a conference last July in Arizona, he said the FDA needs to view stem cells as what they are – human tissue – not a drug. He pointed out that hearts, lungs, kidneys, corneas, skin and other organs are transplanted in the U.S. every day, all without FDA approval.

“The drugs that suppress your immune system so you can receive that heart and survive – those are FDA approved, but the transplant isn’t,” he said. “It’s a procedure. It’s exempt.”

“I think ultimately these (stem cells) should be exempt as well, and should fall under the practice of medicine. That’s my opinion.”

For now, McKenna’s groundbreaking use of stem cells continues to pile up impressive results, providing clinical backup for the research done by people like Riordan.

And every day, it becomes more obvious that the use of stem cells holds the potential for healing across the entire spectrum of human suffering.

“Now, it’s not only about keeping your cartilage from wearing out, it’s about, ‘Can we grow cartilage and help you heal the joint?’” McKenna said. “The answer to that right now is yes-ish. In the not-too-distant future, the answer is yes.”

“It’s an exciting field,” Riordan said.

VIDEO – The Science of Mesenchymal Stem Cells and Regenerative Medicine – Arnold Caplan PhD (Part 4)

In part 4, Prof. Caplan talks about isolating mesenchymal stem cells from bone marrow using specialized; calf serum choosing different assays to prove multipotency – osteogenesis, chondrogenesis, adipogenesis; point of care with autologous bone marrow in orthopedic surgery; tissue engineering bone with lineage restricted MSCs; banking bone discarded bone marrow from orthopedic surgeries for future use;

Stem cell treatments for spinal cord injury: Daniel Campbell

After stem cell therapy at the Stem Cell Institute in Panama, C-6 incomplete spinal cord injury patient, Daniel Campbell describes how his condition has improved since his first treatment. Daniel is in Panama for his second treatment during this recording

“…The trajectory of my recovery drastically took an upward turn. I got grip back, got a lot stronger and my blood pressure issue sort of went out the window. My lower back started firing so when I lean back in my chair, I don’t just fall.

Most recently my hip flexors started firing in certain positions so I can assist the therapist while crawling. Bowel and bladder sensation has gotten better. I have hot and cold sensation in my hands now. Incontinence is a thing of the past.

Allogeneic and autogolous stem cell therapy combined with physical rehabilitation: A case report on a chronically injured man with quadriplegia

Allogeneic and autogolous stem cell therapy combined with physical rehabilitation - A case report on a chronically injured man with quadriplegia

Daniel Leonard in Panama

This is a research paper written by Rebecca Johnston, Daniel Leonard’s sister. She recently graduated from a Physical Therapy degree program, and wrote her Capstone paper about Daniel’s stem cell therapy treatment in Panama.

Daniel is presented anonymously in the paper, but Rebecca and Daniel have given their permission for this paper to be shared. Daniel’s ASIA scores (pre and post treatment) are in the appendix of this paper.

 

Allogeneic and autogolous stem cell therapy combined with physical rehabilitation: A case report on a chronically injured man with quadriplegia

Abstract:

Background and Purpose: Stem cell therapy for SCI is a potentially promising treatment with increasing interest. This case report describes the use of a particular stem cell therapy protocol for a patient with chronic spinal cord injury, and describes his subsequent therapy and outcomes.

Case Description: The patient is a 29-year-old male who is chronically injured from a cervical spinal injury, resulting in quadriplegia. The patient was treated with a combined protocol of intrathecal (IT) and intravaneous (IV) allogeneic MSC and CD34+ cells and IT autologous BMMC at 6 ½ years post-injury. The results track the patient’s physical therapy progress until 6 months following stem cell treatment.

Outcomes: Recovery of strength in upper extremity and lower extremity muscle groups was noted, along with a functional increase in grip strength, ability to ambulate with assistance, and a significant decrease in daily medications.
Discussion: This case supports further investigation into treatment of chronically injured SCI patients with stem cell therapy followed by physical therapy.

Manuscript word count: 4321

A few highlights:

“After the patient underwent the stem cell treatment and returned to outpatient physical therapy in his hometown clinic in the United States, his MMT scores were tested over the period of 5 months post-stem cell treatment…. The patient did not decrease in strength in any of the muscles tested, and experienced improvements in 6/13 upper extremity muscle groups, and 8/9 lower extremity muscle groups.”

“The patient also had an increase in grip strength. His grip strength was measured by his occupational therapist to be 5 lbs on the right and 25 lbs on the left at one month before his stem cell treatment. Six months later, his grip strength was measured to be 22 lbs on the right and 36 lbs on the left. The patient reported that this increase in grip strength led to functional improvements, such as being able to self-catheterize, which he was completely unable to do since his injury.”

“The patient was also able to ambulate for the first time in 5 years at approximately 4 months after finishing his treatment. He was able to ambulate in partial weight bearing with the harness and max assist of two for 40 yards at .5 MPH.”


The original post on Daniel Leonard’s blog can be found here.