Autism and Stem Cell Publications 2017-07-19T16:38:36+00:00
Image of Book and Glasses - Stem Cell Treatment for Autism Publications

Stem Cells and Autism

Scientific publications from PubMed.gov

PubMed comprises more than 23 million citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.


Perspectives on the Use of Stem Cells for Autism Treatment.

Stem Cells Int. 2013;2013:262438
Authors: Siniscalco D, Bradstreet JJ, Sych N, Antonucci N

Abstract
Autism and autism spectrum disorders (ASDs) are complex neurodevelopmental disorders. ASDs are clinically defined by deficits in communication, social skills, and repetitive and/or restrictive interests and behaviours. With the prevalence rates for ASDs rapidly increasing, the need for effective therapies for autism is a priority for biomedical research. Currently available medications do not target the core symptoms, can have markedly adverse side-effects, and are mainly palliative for negative behaviours. The development of molecular and regenerative interventions is progressing rapidly, and medicine holds great expectations for stem cell therapies. Cells could be designed to target the observed molecular mechanisms of ASDs, that is, abnormal neurotransmitter regulation, activated microglia, mitochondrial dysfunction, blood-brain barrier disruptions, and chronic intestinal inflammation. Presently, the paracrine, secretome, and immunomodulatory effects of stem cells would appear to be the likely mechanisms of application for ASD therapeutics. This review will focus on the potential use of the various types of stem cells: embryonic, induced pluripotential, fetal, and adult stem cells as targets for ASD therapeutics.

PMID: 24222772 [PubMed – as supplied by publisher]


Transplantation of human cord blood mononuclear cells and umbilical cord-derived mesenchymal stem cells in autism.

J Transl Med. 2013;11:196
Authors: Lv YT, Zhang Y, Liu M, Qiuwaxi JN, Ashwood P, Cho SC, Huan Y, Ge RC, Chen XW, Wang ZJ, Kim BJ, Hu X

Abstract
BACKGROUND: Autism is a pervasive neurodevelopmental disorder. At present there are no defined mechanisms of pathogenesis and therapy is mostly limited to behavioral interventions. Stem cell transplantation may offer a unique treatment strategy for autism due to immune and neural dysregulation observed in this disease. This non-randomized, open-label, single center phase I/II trial investigated the safety and efficacy of combined transplantation of human cord blood mononuclear cells (CBMNCs) and umbilical cord-derived mesenchymal stem cells (UCMSCs) in treating children with autism.

METHODS: 37 subjects diagnosed with autism were enrolled into this study and divided into three groups: CBMNC group (14 subjects, received CBMNC transplantation and rehabilitation therapy), Combination group (9 subjects, received both CBMNC and UCMSC transplantation and rehabilitation therapy), and Control group (14 subjects, received only rehabilitation therapy). Transplantations included four stem cell infusions through intravenous and intrathecal injections once a week. Treatment safety was evaluated with laboratory examinations and clinical assessment of adverse effects. The Childhood Autism Rating Scale (CARS), Clinical Global Impression (CGI) scale and Aberrant Behavior Checklist (ABC) were adopted to assess the therapeutic efficacy at baseline (pre-treatment) and following treatment.

RESULTS: There were no significant safety issues related to the treatment and no observed severe adverse effects. Statistically significant differences were shown on CARS, ABC scores and CGI evaluation in the two treatment groups compared to the control at 24 weeks post-treatment (p < 0.05).

CONCLUSIONS: Transplantation of CBMNCs demonstrated efficacy compared to the control group; however, the combination of CBMNCs and UCMSCs showed larger therapeutic effects than the CBMNC transplantation alone. There were no safety issues noted during infusion and the whole monitoring period.

TRIAL REGISTRATION: ClinicalTrials.gov: NCT01343511, Title “Safety and Efficacy of Stem Cell Therapy in Patients with Autism”.

PMID: 23978163 [PubMed – in process]


Stem cells as a good tool to investigate dysregulated biological systems in autism spectrum disorders.

Autism Res. 2013 Oct;6(5):354-61
Authors: Griesi-Oliveira K, Sunaga DY, Alvizi L, Vadasz E, Passos-Bueno MR

Abstract
Identification of the causes of autism spectrum disorders (ASDs) is hampered by their genetic heterogeneity; however, the different genetic alterations leading to ASD seem to be implicated in the disturbance of common molecular pathways or biological processes. In this scenario, the search for differentially expressed genes (DEGs) between ASD patients and controls is a good alternative to identify the molecular etiology of such disorders. Here, we employed genome-wide expression analysis to compare the transcriptome of stem cells of human exfoliated deciduous teeth (SHEDs) of idiopathic autistic patients (n = 7) and control samples (n = 6). Nearly half of the 683 identified DEGs are expressed in the brain (P = 0.003), and a significant number of them are involved in mechanisms previously associated with ASD such as protein synthesis, cytoskeleton regulation, cellular adhesion and alternative splicing, which validate the use of SHEDs to disentangle the causes of autism. Autistic patients also presented overexpression of genes regulated by androgen receptor (AR), and AR itself, which in turn interacts with CHD8 (chromodomain helicase DNA binding protein 8), a gene recently shown to be associated with the cause of autism and found to be upregulated in some patients tested here. These data provide a rationale for the mechanisms through which CHD8 leads to these diseases. In summary, our results suggest that ASD share deregulated pathways and revealed that SHEDs represent an alternative cell source to be used in the understanding of the biological mechanisms involved in the etiology of ASD.

PMID: 23801657 [PubMed – in process]


Therapeutic role of hematopoietic stem cells in autism spectrum disorder-related inflammation.

Front Immunol. 2013;4:140
Authors: Siniscalco D, Bradstreet JJ, Antonucci N

Abstract
Autism and autism spectrum disorders (ASDs) are heterogeneous, severe neuro-developmental disorders with core symptoms of dysfunctions in social interactions and communication skills, restricted interests, repetitive – stereotypic verbal and non-verbal behaviors. Biomolecular evidence points to complex gene-environmental interactions in ASDs. Several biochemical processes are associated with ASDs: oxidative stress (including endoplasmic reticulum stress), decreased methylation capacity, limited production of glutathione; mitochondrial dysfunction, intestinal dysbiosis, increased toxic metal burden, and various immune abnormalities. The known immunological disorders include: T-lymphocyte populations and function, gene expression changes in monocytes, several autoimmune-related findings, high levels of N-acetylgalactosaminidase (which precludes macrophage activation), and primary immune deficiencies. These immunological observations may result in minicolumn structural changes in the brain, as well as, abnormal immune mediation of synaptic functions. Equally, these immune dysregulations serve as the rationale for immune-directed interventions such as hematopoietic stem cells (HSCs), which are pivotal in controlling chronic inflammation and in the restoration of immunological balance. These properties make them intriguing potential agents for ASD treatments. This prospective review will focus on the current state-of-the-art knowledge and challenges intrinsic in the application of HSCs for ASD-related immunological disorders.

PMID: 23772227 [PubMed]


Stem cells and modeling of autism spectrum disorders.

Exp Neurol. 2012 Oct 2;
Authors: Freitas BC, Trujillo CA, Carromeu C, Yusupova M, Herai RH, Muotri AR

Abstract
Human neurons, generated from reprogrammed somatic cells isolated from live patients, bring a new perspective on the understanding of Autism Spectrum Disorders (ASD). The new technology can nicely complement other models for basic research and the development of therapeutic compounds aiming to revert or ameliorate the condition. Here, we discuss recent advances on the use of stem cells and other models to study ASDs, as well as their limitations, implications and future perspectives.

PMID: 23036599 [PubMed – as supplied by publisher]


Derivation of autism spectrum disorder-specific induced pluripotent stem cells from peripheral blood mononuclear cells.

Neurosci Lett. 2012 May 10;516(1):9-14
Authors: DeRosa BA, Van Baaren JM, Dubey GK, Lee JM, Cuccaro ML, Vance JM, Pericak-Vance MA, Dykxhoorn DM

Abstract
Induced pluripotent stem cells (iPSCs) hold tremendous potential both as a biological tool to uncover the pathophysiology of disease by creating relevant cell models and as a source of stem cells for cell-based therapeutic applications. Typically, iPSCs have been derived by the transgenic overexpression of transcription factors associated with progenitor cell or stem cell function in fibroblasts derived from skin biopsies. However, the need for skin punch biopsies to derive fibroblasts for reprogramming can present a barrier to study participation among certain populations of individuals, including children with autism spectrum disorders (ASDs). In addition, the acquisition of skin punch biopsies in non-clinic settings presents a challenge. One potential mechanism to avoid these limitations would be the use of peripheral blood mononuclear cells (PBMCs) as the source of the cells for reprogramming. In this article we describe, for the first time, the derivation of iPSC lines from PBMCs isolated from the whole blood of autistic children, and their subsequent differentiation in GABAergic neurons.

PMID: 22405972 [PubMed – indexed for MEDLINE]